If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(y)^2+4y=0
a = 1; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*1}=\frac{-8}{2} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*1}=\frac{0}{2} =0 $
| 8-(7-x)=28-2x | | 5+2(3-x)=29-3x | | 9/s=27 | | 12-5x=2x+54 | | 12=x÷2+9 | | 4x+3=2x+15= | | 4x+3=2x+15x= | | x÷6-7=-9 | | 3=x2-7 | | 5*(2x-4)=10 | | 45-x=225 | | 4x″₊4x′+17x=0 | | 7x-12=3x+38 | | 45/x=225 | | x-11=7/9 | | -1.1(s-(-4.2)+1.37=-6.77 | | -6=-1-x/2 | | 4x^2-17=3 | | 2(u+1)-7=3 | | 5.61=1.87(f-6) | | 3(q+5)-1=8 | | 5u-5=-10+4u | | 60-3x=15x-6 | | 5u−5=–10+4u | | 180=-10n | | 3=2(s-5)-7 | | 4p-p+8=2p+ | | 7560=180(n-2) | | 4a=36a=10 | | 7x-6+6=50+6 | | 2x829=25 | | -5(b-20)=-20 |